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An alternative form of (26) may be obtained by using the follow-
ing identity: ‘

‘ - o(mg/2b)
sinh (g%) = ¢ : (28)
1 + coth (24
. 2b
with the result .
Lo ng[? 4 210 (1 + con T = AC . (29)
&oL b = 2b gL

In this form it is easy to identify the first term in (29) as the
plate capacitance betiveen the stripline and the horizontal walls,
and the second term as the fringing capacitance between the
edges of the stripline and the side walls. For large gaps, the
fringing term approaches (8/z) In 2, as expected [7, p. 515].

It is interesting to note that the first term on the right-hand
side of (29) is the same formula given by Chen [7] and originally
derived by Cohn [1]. Cohn’s formula was derived assuming that
the width of the center septum, 2w, was very large compared
to the plate separation, 2b. This is equivalent to assuming that
the two edges of the septum do not interact. AC, then, in (29)
can be interpreted as a correction term needed to account for the
interaction between the two edges. From (27) it can be seen that
AC will be negligibly small if A is near one (or A’ is near zero)
since k is near one. From (15) A’? is given approximately by

2b (30)

- .
A% ~ k2 sinh* (—g—) .
It can be seen from (30) that for small gaps, A’ is always much
less than one. For large gaps, it can be shown that (30) further
reduces to )
A2~ g~ 2ntwib) 3D
by using the approximate expression for the modulus, %, given
by Anderson [8]. From (31) it can easily be verified that A’
will be negligibly small, and hence AC may be neglected if

3 = ‘5 . (32)
In (21) we have the restriction that 42 > 1/2, or equivalently
A? < 1/2. From (31) it can be seen that 1> < 1/2 if

Yo lmo~on
b =g ne=0lL

33)
So for the range: 1/10 < w/b < 1/2, AC is not negligible and
must be calculated using (27), (31), and k ~ 1.

The approximate formula for the capacitance given in (26)
is plotted in Fig. 5 with a dashed line for AC = 0. The exact
formula using (6), (15), and (18) is plotted using a solid line.
The two curves agree almost identically except where w/b < 1/2.
This discrepancy can be attributed, however, to the AC term
which was neglected.

CONCLUSIONS

The exact and an approximate form for the capacitance of
the rectangular-coaxial-strip transmission line have been pre-
sented. The approximate form enables one to, evaluate the edge-
interaction capacitance for a limited range of w/b ratios. For
w/b ratios greater than 1/2, our approximation was shown to
reduce to those obtained by other authors who neglected the
edge-interaction capacitance. Thus we have found the restric-
tions that must be observed when using their approximation.
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A Coplanar Waveguide with Thick Metal-Coating

T. KITAZAWA, Y. HAYASHI, AND
M. SUZUKI, SENIOR MEMBER, IEEE

Abstract—A theoretical method is presented for the analysis of a
coplanar waveguide with thick metal-coating. Numerical results are
given and compared with published data. It is shown that the metal-
coating thickness of the coplanar waveguide causes an increase in wave-
Iength and a decrease in characteristic impedance and that the changes
are about the same as those of a sloft line.

INTRODUCTION

A coplanar waveguide (CPW) has been investigated on the
basis of a quasi-static approximation [1], [2], and recently
Knorr and Kuchler [3] obtained the frequency dependence of
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Fig. 1. Coplanar waveguide. ¢ is the dielectric constant.

the CPW by extending the method proposed by Itoh and Mittra
[4]. These theories, however, neglect the effect of the metal-
coating thickness. For the dispersion characteristics of a single
slot line, the authors [5] employed the network analytical methods
of electromagnetic fields [6] to evaluate the effect of the metal-
coating thickness. In this short paper we extend this method to
analyze the CPW with the metal-coating thickness greater than
zero and evaluate the dispersion characteristics and character-
istic impedance.

DETERMINANTAL EQUATION

A cross section of the CPW is shown in Fig. 1. First we express
the transverse fields E,, H, in the regions z > ¢, t > z > 0,
0 > z> —~h,and —h > z by the following Fourier integral:

A z>1,0>z> —hand ~h > 2z, —0 < x < ©

E, 1 & Vi(a,B52) f1(a, B5x)
= de d,
H.} N f f o (=Jf) {Iz(“ 8:2)9,(.B; x)} b
@
where
fi = (xox + ¥oB) exp (—jax)
\/27r
L= (xoB = you) exp (—jax)
\/27t
g = 2% X fi, (= 12)
K =+a? + B2 Q@)
B. t>2>0;, -b<x< —a (suffix L) and a < x < b
(suffix R) '
E”IS 1 2 -] i
H,x B :/2__77.'1:1 —0 = )
L
I/I}E(amﬁ; z).ﬁf(dmﬂ;x)
. —7F d 3
exp( ]ﬁy) Ilﬁ(an’ﬁ;z)gllé(amﬁ;x) ﬂ ( )
where
0, _ (n=0,1=1)
a(m) = {1N2, (n=0,1=2)
1, (n #0)
fir = ;{1 2 Lo, COS {0,(x T @)} — yojBsin {a(x T @)}]
L N

2 . ) _ . _
fzﬁ %,,\/; [x07B cos {cx,f(x F a)} ~ youu sin {a(x F a)}]

gir = %o X fig I=12
L L ‘
K,.=\/a,,2+/32, W=5-a

o, = 2nnfW, )
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C.t>z>0;|x|>band|x| <a

E,=0 H;=0 ®)
where xg, ¥o, and z, are unit vectors along the x, y, and z axes,
respectively, and / = 1 and / = 2 represent E waves (H, = 0)
and H waves (E, = 0), respectively. V; and I; are mode voltages
and mode currents, and f; and g, are vector mode functions which
satisfy boundary conditions

8H,

E, = 0, ke S
v ox
x= +aand b, O<z<? ' 6)

and the following orthonormal properties:
—a
f i @ B3) - 2o X fin(nB5) dx
—b .
b *
- f Gx @ B3) - To X Fin(tuB3x) d% = Sy1e G
a
[+ o]
f 9 @B - 7o X fulwBix) dx = 8y Sa — o)
-0
ou Kronecker's delta;
&(a — o) Dirac’s é-function;

™

where the asterisk signifies the complex conjugate function. The
derivation of the determinantal equation for the propagation
constant of CPW is-a straightforward extension of that for a
single slot line [5]. Denote by m(x) exp (--jBoy) and
m,(x") exp (—jBoy) the magnetic currents at z = ¢ and z = 0,
respectively, where S, is a propagation constant. Considering the
field continuity on the boundary surfaces, we obtain the deter-
minantal equation for the propagation constant

f f [a)so Gl(“ﬂo,xlx)

— 20 Gy(a,fo; x| x )] my(x") da dx’
Who

b © _
= f Z {wao FlR(“mﬂO; X ! x’)
a 1=0

- Fyr(%, 805 x | x')} < iy (0, Bo 3 %) dx’
Who

f i {wso FlR(amﬁOs X l x

wBo; x| x')} < ity (o B ) X'

0

’ko tan (kh) :
f f s k Gi(@bes x| %)
Ko 1 _ 5 tan ek

&Ko
1 = % tan (ki
ko ko

2 G-z(“,ﬂo; X i x')
©OHo | 4 ftan (kh)

- my(x') da dx' ®



606
where
ko = '\/I(/2 d (0260/10, k = '\/wzeﬂo - K/2
= ‘/Kn'2 — w?eolo, & = &feo
K/ = \/(12 + ﬁoz, Kn’ = \/“"2 + ﬂoz

#iy = coth (y,t)m,(x') — cosech (yt)ma(x)

tit, = cosech (y,£)m;i(x) — coth (y,t)m,(x")
Gi(@.B0; x| ) = gy, Bosx)g*(@,Bosx), Dyadic
Fir(@Bo; X | X) = gir(@nBoi)gin*@mBosx’), 1=12

where x lies within the regiona < x < b.

CHARACTERISTIC IMPEDANCE

Because of the hybrid mode of propagatlon, the definition for
characterlstlc impedance is not uniquely specified. The definition
chosen here is }

Vy?
Zo = —_— (9)
) 2Pave
where ¥} is the peak voltage and P, is the average power flow
along the y direction. ‘

NUMERICAL PROCEDURE AND RESULTS

The determinantal equation (8) is exact, and involves x and y
components of the vector magnetic current. If, however, the first-
order apprbximation is used, the computation time can be
reduced [3]. The width W is usually very small compared to a
wavelength, so that for the lowest order hybrid mode the trans-
verse magnetic current can be neglected. Igrioring the transverse
magnetic current, the determinantal equation (8) results in the
following mtegral representation :

1 (we k
NI
bd-0 K ko Wity

cexp [—ja(x — x")] da dx’

we,
{ OenlanZ _ Vn en”ﬁOZ}

} my,(x")

47z 1
T w anOK'Z

o
- {cosech (y,t)m,,(x") — coth (y,2)my,(x')}
- o8 {yu(x — @)} cos {y,(x" — a)} dx’'

4 P& 1 (weg , - Cy
— { g 2 8nﬁ02}

w a =0 K,,'Z non
- {cosech (?int)mly(x') — coth (y,2)my,(x")}

Vn (2727)

- €08 {ya(x — a)}cos {p,(x' — @)} dx’

sko
r 2 tan (kh
_J”’ J"” 1 Jwe k @ )a2
= (2
b dow KT Koy K on ki)
) &Ko
k
1 — —tan (kh
ko K - (kh)

Who 4 ’% tan (k%)

© my(x") e!xp [-ju(x — x')] da dX’ 10)
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where :
o [0 =0
" :1, n # 0)
o [B =0
" 1, (n #0)

where m,(x’) and m,,(x") are the longitudinal magnetic current
on the surfaces z = ¢ and z = 0, respectively. The longitudinal
magnetic-current distributions are unknown, so that appropriate
trial functions must be selected. We assume the following
distribution [3]: '

N - mid
") = @~ a - b7 — PR
a<x<b i=12 (1D

where m;, and m,, are constant values. From (10) and (11)
phase constant f, can be obtained by applying the numerical
calculation method used in [5] The resulting equation is given
as follows:

{G1(Bo) — G4(Bo)3 - {Gz(ﬁo) - G4(ﬁo)} = {G:(B0)¥* (12)

where
© 1 |(we k b —a
G — T 1% 2 _ "o 2 J 2
1(Bo) fo X2 {ko a P Bo } ( 2 “)
oz) da

. Sin2 a+ b
2
. Srk 0

Ga(Bo) = f ”
0

1

K2

@2

1+

tan (kh)

k

—— tan (kh)

a2

&g

1 - f— tan (kh)
ko ko 2 2 (b — a
- _k——‘ BO JO 2 a
©Ho 1 ;0 tan (kh)

. sin? (a + bac) do
2
14 Yo
cosech (yot
b — & [Zw,uo (Po?)

6221
{ Y] n2 . Vn BOZ}

7n Who

G;3(Bo) =

M8

- cosech (y,1)J,> (b ; a az,,)

. cos? (b ; 4 oz,,)]

Yo
coth (yqt
b= a [2 ot (vo?)

1 {wso _
K2\ 7 oo |

Ga(Bo) =

s

n=1

- coth (,.£)J? (b —

Jo(x)  zero-order Bessel function.
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From (12) we can find the phase constant for the lowest hybrid
mode, which is expected to be in the range f, > oV gollg. Sub-
stituting this value into (9), the characteristic impedance can be
obtained. G4 and G, converge very rapidly; however, the rate of
convergence of G, and G, is slow and can be improved by the
following procedure. When & — <0, the integrand of G; becomes

_&i)L

Kiw = lim K; = on) %7
0

a—> o

L S P
n(b—-a)( °

G may be rewritten as follows:

G, = f (K, — K;y) da + f K, do. (14)
0

0

The first integral on the right converges rapidly compared to G,
while the second may be expressed in closed form as

on Kip doa = (coao - &’i) M(Bo)

0 Wy

where

R T _ b+ a
M09 = | o0 (250

1 _ ‘
m [2{exp (—2B0)E(280)

— exp (2Bo)E{(—2h0)}

4
— exp (b—_a;ﬂo)Ei(_b - aﬂo ]

where E;(x), Ei(x) represent the exponential-integral function.
Similarly, for G,

G, = fw (K, — Kyo) da + (coz-:oe, - -ﬂg—) M(Bo).
o (97173

In Fig. 2 the computed results, supposing the thickness equal
to zero, are shown and compared with those from [3]. Note that
the characteristic impedance of CPW, Z,, given by (9) is one-half
of the odd-mode characteristic impedance of coupled slots, Z,,,
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Fig. 2. (a) Normalized guide wavelength. (b) Characteristic impedance.

t{/W = 0; W = b — a. Solid line represents present method and broken
line represents Knorr and Kuchlers” method [3].

defined in [3]. The difference is less than 1 percent for the dis-
persion characteristics [Fig. 2(a)] and less than 4 percent for the
characteristic impedance [Fig. 2(b)]. It must be mentioned that
the values of Knorr and Kuchler are available only for a graphical
representation [3, fig. 6] and therefore may be somewhat in
error.

Fig. 3 shows the effect of the metal-coating thickness on the
guide wavelength and the characteristic impedance. When the
/W ratio is 0.02, the increase in the wavelength is about 1 per-
cent and the decrease in the characteristic impedance is about
1.5 percent, and these are about the same as those of slot line [5].
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Fig. 3. (a) Normalized guide wavelength. (b) Characteristic impedance.
g = sh = 10mm; 4 = 02 mm; b = 0.7 mm; = b — a
@G) ¢ W = 0.00; (i) /W = 0.02; (iii) ¢/ W = 0.04; (iv) /W = 0.10.

These numerical calculation were carried out by the electronic
computer FACOM 230-75. The calculation time was about 6 s
for the wavelength and 0.5 s for the characteristic impedance.
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Analytical IC Metal-Line Capacitance Formulas
W. H. CHANG, MEMBER, IEEE

Abstract—In semiconductor IC technology, capacitances formed by
the multilevel interconnection metal lines usually dominate circuit
performance. However, for lack of accurate formulas, a numerical
method usually has to be used to determine these capacitances. Two
analytical capacitance formulas were derived using approximate con-
formal mapping techniques. One formula gives the capacitance of a
finite-thickness metal line over a conducting ground plane, or over a
silicon surface. The other formula gives the capacitance of the same
metal line, but with an additional conducting metal line over it. The
formulas are most accurate for metal lines whose width exceeds the di-
electric thickness; accuracy increases with linewidth. They are accurate
to 1 percent for a metal line whose width is comparable to the dielectric
thickness. With these simple formulas, statistical distribution of the
metal-line capacitances can be easily determined in a few seconds of
computer time. '

I. INTRODUCTION

In semiconductor integrated-circuit technology, capacitances
formed by the metal interconnection lines usually dominate the
circuit performance of the chip. It is therefore important for a
circuit designer to determine metal-line capacitances accurately.
Since the basic structure is similar to that of a microwave strip-
line, the structure has been well analyzed [1]-[8]. However,
most of the treatment is either limited to a metal line of infini-
tesimal thickness, or a complicated numerical method is used to
obtain the capacitances. The numierical method requires a
computer and long computation time. Using conformal mapping
techniques, accurate analytical capacitance formulas have been
derived for a single rectangular metal line. Two analytical
capacitance formulas are given: one gives the capacitance of a
rectangular metal line over a conducting ground plane; the other
gives the capacitance of the same metal line with two conducting
ground planes, one above it and the other below it.

II. A MEeTAL LINE OVER A GROUND PLANE

Fig. 1 shows a rectangular metal line above a ground plane.
The metal has a width W, thickness ¢, and is separated from the
ground plane by the distance 4. The ground plane may be a
silicon surface operating in an accumulation région. Because
of the symmetry of the structure, only one-half of the structure
needs to be considered. The half metal line BCDE is extended
to infinity at 4 and F in Fig. 2(a) to apply conformal mapping
techniques and get a simpler formula. Boundary conditions are
that the metal be at unity voltage, and ground plane be at 0
voltage, and the normal electric field vanishes along the lines
MB and EKG. The Schwarz-Christoffel transformation (2)

nz _p+1 -1 p — 1 R
R tanh™ R + (W) (1__‘}5)
'‘Rp'/? — 1
+ In | ———r0 1
) (Rp”2 + 1 0
. 1/2 : A :
R = (w + 1) @)
w+p ‘
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