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An alternative form of (26) maybe obtained by using the follow-
ing identity:

‘i”h(:)=[1‘~%11
with the result

5=4(f+:1n(’+c0th3A

(28)

AC
— . (29)
80L

In this form it is easy to identify the first term in (29) as the
plate capacitance between the stripline and the horizontal walls,
and the second term as the fringing capacitance between the
edges of the stripline and the side walls. For large gaps, the
fringing term approaches (8/n) in 2, as expected [7, p. 515].

It is interesting to note that the first term on the right-hand
side of (29) is the same formula given by Chen [7] and originally
derived by Cohn [1]. Cohn’s formula was derived assuming that
the width of the center septum, 2w, was very large compared
to the plate separation, 2b. This is equivalent to assuming that
the two edges of the septum do not interact. AC, then, in (29)
can be interpreted as a correction term needed to account for the
interaction between the two edges. From (27) it can be seen that
AC will be negligibly small if A is near one (or 1’ is near zero)
since k is near one. From (15) A’z is given approximately by

()A’2 z k’2 sinh4 ~ . ‘ (30)

It can be seen from (30) that for small gaps, A’ is always much
less than one. For large gaps, it can be shown that (30) further
reduces to

1,2 ~ ~-2n(w/b) (31)

by using the approximate expression for the modulus, k, given

by Anderson [8]. From (31) it can easily be verified that 1’

will be negligibly small, and hence AC may be neglected if

(32)

In (21) we have the restriction that 12> 1/2, or equivalently
1’2< 1/2. From (31) it can be seen that ~z < 1/2 if

:> -Lb–2zn2E 0.1. (33)

So for the range: 1/10 < w/b c 1/2, AC is not negligible and
must be calculated using (27), (31), arid k & 1.

The approximate formula for the capacitance given in (26)

is plotted in Fig. 5 with a dashed line for AC = O. The exact

formula using (6), (15), and (18) is plotted using a solid line.
The two curves agree almost identically ex@pt where w/b < 1/2.
This discrepancy can be attributed, however, to the AC term
which was neglected.

CONCLUSIONS

The exact and an approximate form for the capacitance of
the rectangular-coaxial-strip transmission line have been pre-
sented, The approximate form enables one to, evaluate the edge-
interaction capacitance for a limited range of wjb ratios. For
w/b ratios greater than 1/2, our approximation was shown to
redum to those obtained by other authors who neglected the
edge-interaction capacitance. Thus we have found the restric-
tions that must be observed when using their approximation.
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Fig. 5. Capacitance of a rectangular-coaxial-strip transmission line,
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A Coplanar Waveguide with Thick Metal-Coating

T. KITAZAWA, Y. HAYASHI, ANO
M. SUZUKI, SENIOR MSMBER, ISEE

Abstract—A theoretical method is presented for the analysis of a
coplanar waveguide, with thick metal-coating. Numerical results are
given and compared with published data. It is shown that the metal-

coating thickness of the coplanar waveguide causes an increase in wave-
len~ aad a deerease in characteristic impedance and that the changes

are about the same as those of a slot line.

INTRODUCTION

A coplanar wave@tide (CPW) has been investigated on the
basis of a quasi-static approximation [1 ], [2], and recently
Knorr and Kuchler [3] obtained the frequency dependence of
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Fig. 1. Coplanar waveguide. e is the dielectric constant.

the CPW by extending the method proposed by Itoh and Mittra

[4]. These theories, however, neglect the effect of the metal-

coating thickness. For the dispersion characteristics of a single

slot Iirie, the authors ,[5 ] employed the network analytical methods

of el,eetromagnetic fields [6] to evaluate the effect of the metal-

coating thickness. In this short paper we extend this method to

analyze the CPW with the metal-coating thickness greater than

zero and evaluate the dispersion characteristics and character-

istic impedance.

DETERMINANTAL EQUATION

A cross section of the CPW is shown in Fig. 1. First we express

the transverse fields Et, Ht in the regions z > t, t > z > 0,

0> z > – h, and – h > z by the following Fourier integral:

A.z>t, O>z>–h, and–h>z; –W<X <CO

K = JC# + p. (2)

B.t>z>O; –b<x<–a (suffix L) anda< x<b

(suffix R)

E tR

] J“

L—

J1g ,t,
w ~ 8,(7Z)

H,R _m n=o

L

[

fiR(%#;z).fiR(an, ~;x)

. exp ( –jBy) L
L

‘IR(an>~;z)~lR(an, @;x)
L L )

where

{

o, (n=o, l=l)

El(n) = l/Jz, (n=o, l=2)

1, (n # o)
.—

f,; .$

d

# [xoan cos {an(x T a)} - yojp sin {a.(x T a)}]
n

f2; = +
J

* [xoj~ cos {an(x T a)} - Yofx” sin {a.(x T a)}]
n

glf = ZOx AR, 1 = 1,2
L

605

C.t>z>O; lx{> bandlxl<a

E,=O H~=ct (5)

where Xo, Yo, and Z. are unit vectors along the x, y, and z axes,

respectively, and 1 = 1 and 1 = 2 represent E waves (HZ = 0)

and H waves (Ez = O), respectively. P’l and 11 are mode voltages

and mo,de currents, and~ and gl are vector mode functions which

satisfy boundary conditions

E, = O,
aH, o

ax –

x= ka and fb, O<z <t’ (6)

and the following orthonormal properties:

J
—a

~1’L*(an’#;x)” ZO x fiL(am8;x) dx
-b

J
cm

a~*(~’,B;x). zo x .Mw%) dx = JW Ma – a’)
-m

(7)

I&’ Kronecker’s delta;

d(a – a’) Dirac’s &function;

where the asterisk signifies the complex conjugate function. The

derivation of the determinantal equation for the propagation

constant of CPW is a straightforward extension of that for a

single slot line [5]. Denote by ml (x’) exp (--j/l. y) and

nZ2(X’) exp ( –j~o y) the magnetic currents at z = t and z = O,

respectively, where Do is a propagation constant. Considering the

field continuity on the boundary surfaces, we obtain the deter-

minantal equation for the propagation constant

bm
—

m

~ (71(a,l?o; x \ x’)

-b –m o

– ~ G2(LZ,BO; x I x’)
1

. ml(x’) da dx’
Im/uo

J{
= : “~. ~ ~lR(%80; X I X’)

‘n F2R(%> o Y
—— )~“ X I X’) . iil(fZn,f!?o;X’) dx’

co,ao

bm

H{

1 + ~ tan (kh)
oJ&o—— G~(a,/lo; x \ x’)

-b -m kol _ ~ tan (kh)
erko

1 – # tan (kh)
k. o—_ G,(a,Po; x i x’)

@Jfo l+_ ‘0 tan (kh)
k 1

. m,(x’) da dx’ (8)
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where

k. = ~K’2 – cozeopo, k = Jco2epo – K’2

yn = dKn’2 – CO2&o/Jo, &r = &/&.

K’ = JU2 + ~02, Kn’ = JUR2 i- j?02

iil = coth (Y.t)ml(X’) – cosech (Ynt)2n2(X’)

m= = cosech (Y.t)ml(i’) – coth (~nf)l?Z2(X’)

f3@J?~ ; x I x’) = g~(a,p~ ;x)gj*(a,Bo ;X’), Dyadic

~/R(@rJ; x I x’) = iR(L%n,~O ;x)&R*(%#O ;X’), 1 = 1,2

where x lies within the region a < x c b.

CHARACTERISTIC IMPEDANCE

Because of the hybrid mode of propagation, the definition for

characteristic impedance is not uniquely specified. The definition

chosen here is

V02
zo=—

2Pave
(9)

where V. is the peak voltage and Pa,, is the average power flow

along the y direction.

NUMERICAL PROCEDURE AND RESULTS

The determinantal equation (8) is exact, and invoives x and y

components of the vector magnetic current. If, however, the first-

order approximation $ used, the computation time can be

reduced [3]. The width W is usually very small compared to a

wavelength; so that for the lowest order hybrid mode the trans-

verse magnetic current can be neglected. Ignoring the transverse

magnetic current, the determinantal equation (8) results in the

following integral representation:

LJ:.+=(2’a2-27°2}“’(x’)
. exp [- J“a(x —

‘; IJ’o*(*”a’-2-7’’’021
. {cosech (ynt)nz2y(x’) – coth (Yn~)mlY(X’)}

. cos {yn(x – a)] cos {yn(x’ – a)} dx’

H.%&-’’a’a’-2’”’’’02)
. {cosech (Y#)nZlY(X’) – coth (Y.t)nZ2y(X’)}

. cos {Y”(x – a)) cos {Yn(X’ – a)} dx’

bca

U [

1 + ~ tan (kh)
1 W&o

. —.
K’= k.

a=
-b -m 1 – ~. tan (kh)

r

1 – # tan (kh)
k. o.—

‘flo 1 + * tan (kh)
1

0 m2y(x’)exp [ -ja(x – x’)] da dx’

x’) ] da h?

(lo)

where

(

o,
En’ =

(n = O)

1, (n # O)

{

+> (n = O)
en” =

1, (n # O)

where mlJx’) and m2 Jx’) are the longitudinal magnetic current

on the surfaces z = t and z = O, respectively. The longitudinal

magnetic-current distributions are unknown, so that appropriate

trial functions must be selected. We assume the following

distribution [3]:

‘iy(x’) = {1 – (2x – a 5)2/(b – a)2}1/2 ‘

a<x <b, i=l,2 (11)

where mlo and m=o are constant values. From (10) and (11)

phase constant Do can be obtained by applying the numerical

calculation method used in [5]. The resulting equation is given

as follows:

{G1(/30) – G,.@o)} . {G2(~o) - G4(~o)} = {G,(~o)}2 (12)

where

G,(/?o) =
H

*1 OJco .2

0 “02} ’02 (~”)
~ y~ –Wpo

o

()a+b
. sin= — a da

2

1 + ~ tan (kh)

G2(~o) =

J(

‘1 oJ&o
U2

o s~
1 – ~ tan (kh)

r

()a+b
. sin2 — a da

2

G3(~o) = ~
[

~ cosech (yot)
b – a 2copo

(-$& :%2 - *OBO=}
n

(b~aan)cosech (y.t )J02 —

“ co”(b+an)l

. coth (y”t).lo’
(ya’’)cos2(%an)l

Jo(x) zero-order Bessel function.



SHORTPAPERS

From (12) we can find the phase constant for the lowest hybrid

d—mode, which is expected to be in the range /?O > co 8.,.0. Sub-

stituting this value into (9), the characteristic impedance can be

obtained. G3 and G4 converge very rapidly; however, the rate of

convergence of G1 and G2 is slow and can be improved by the

following procedure. When a + m, the integrand of G1 becomes

()a+b
. sin2 —

2a

G1 may be rewritten as follows:

pm

COS2 b – a

( )
a—~.

2 4
(13)

pm

G, = I (Kl – Kim) da + I Klm da. (14)

Jo Jo

The first integral on the right converges rapidly compared to G1,

while the second may be expressed in closed form as

J
m

Klm da =
o

where

M(flo) =
1

2~O(lr - a)

(w&o-$iP(’o)

(1-exp(-2b=’0)1
+ 4DOn(~ _ ., [2{exp ( - 2~o)Et(2/LJ

– exp (2~O)Ei( – 2f?0) )

- “’(-+-=’0)’’(+=’0)
‘exp(+’~’O)E’(-~’O)

(+exp –
$~’”)”i(~ ’o)

“exp(+~’O)Ei(-*’O)l
where Ei(x), Ei(x) represent the exponential-integral function.

Similarly, for G2

G2 = J*(Kz – K.w) da +

(
coeoer - ~ M(/lo).

o U,ao )

In Fig. 2 the computed results, supposing the thickness equal

to zero, are shown and compared with those from [3]. Note that

the characteristic impedance of CPW, 2., given by (9) is one-half

of the odd-mode characteristic impedance of coupled slots, ZOO,
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Fig. 2. (a) Normalized guide wavelength. (b) Characteristic impedance.
t/W = O; W = b – a. Solid hne represents present method and broken
line represents Knorr and Kuchlers’ method [3].

defined in [3]. The difference is less than 1 percent for the dis-

persion characteristics [Fig. 2(a) ] and less than 4 percent for the

characteristic impedance [Fig. 2(b)]. It must be mentioned that

the values of Knorr and Kuchler are available only for a graphical

representation [3, fig. 6] and therefore may be somewhat in

error.

Fig. 3 shows the effect of the metal-coating thickness on the

guide wavelength and the characteristic impedance. When the

t/W ratio is 0.02, the increase in the wavelength is about 1 per-

cent and the decrease in the characteristic impedance is about

1.5 percent, and these are about the same as those of slot line [5].
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Fig. 3. (a) Normalized guide wavelength. (b) Characteristic impedance.
.%=20 ;h=l:Omm; A= 0.2mm; b=0.7mm; W= b—a
(i) t/lV = 0.00; (n) t/JV = 0.02; (iii) t/?V = 0.04; (iv) t/JV = 0.10.

These numerical calculation were carried out by the electronic

computer FACOM 230-75. The calculation time was about 6 s

for the wavelength and 0.5 s for the characteristic impedance.
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Analytical IC Metal-Line Capacitance Formulas

w. H. CHANG, MBMBER,IEEE

Abstract—In semiconductor IC technology, capacitance formed by
the medtilevel interconnection metal lines usually dominate circuit

performance. However, for lack of accurate formulas,, a numerical
method usually has to be used to determine these capacitances. Two

analytical capacitance formulas were derived using approximate con.
formal mapping techniques. One formula gives the capacitance of a

finite-thickness metal line over a conducting ground plane, or over a

silicon surface. The other formula gives the capacitance of the same

metal line, but with an additional conducting metal line over it. The

formulas are most accurate for metal lines whose width exceeds the di-
electric thickness; accuracy increases with Iinewidtb. They are accurate
to 1 percent for a metal line whose width is comparable to the dielectric

thickness. With these simple formulas, statistical distribution of the
metal-line capacitances can be easily determined in a few seconds of

computer time.

I. INTRODUCTION

In semiconductor integrated-circuit technology, capacitances

formed by the metal interconnection lines usually dominate the

circuit performance of the chip. It is therefore important for a

circuit designer to determine metal-line capacitances accurately.

Since the basic structure is similar to that of a microwave strip-

Iine, the structure has been well analyzed [1]- [8 ]. However,

most of the treatment is either limited to a metal line of infini-

tesimal thickness, or a complicated numerical method is used to

obtain the capacitances. The numerical method requires a

computer and long computation time. Using conformal mapping

techniques, awtrate analytical capacitance formulas have been

derived for a single rectangular metal line. Two analytical

capacitance formulas are given: one gives the capacitance of a

rectangular metal line over a conducting ground plane; the other

gives the capacitance of the same metal line with two conducting

ground planes, one above it and the other below it.

II. A METAZ., LmE OVER A GROUND PLANE

Fig. 1 shows a rectangular metal line above a ground plane.

The metal has a width W, thickness t,and is separated from the

ground plane by the distance h. The ground plane may be a

silicon surface operating in an accumulation region, Because

of the symmetry of the structure, only one-half of the structure

needs to be considered. The half metal line BCDE is extended

to intinity at A and Fin Fig. 2(a) to apply conformal mapping

techniques and get a simpler formula. Boundary conditions are

that the metal be at unity voltage, and ground plane be at O

voltage, and the normal electric field vanishes along the lines

MB and EKG. The Schwarz-Christo ffel transformation (2)

rcz p+l..—
h p1i2 ‘anh-” + r>) (*)

()W+ll’2
R= —

W+p
(2)
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